{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e90a0bb8-bcc6-4989-bcac-e9d4a929bf39", "metadata": {}, "outputs": [], "source": [ "import os \n", "import sys\n", "sys.path.insert(0, os.path.abspath('../..'))\n", "\n", "import sympy as sp\n", "import numpy as np\n", "import itertools as it\n", "import pysymmpol as sy\n", "import pysymmpol.utils as ut\n", "from IPython.display import display, Latex" ] }, { "cell_type": "markdown", "id": "1a39453f-2892-4d1c-ad2e-fd75b33872c3", "metadata": {}, "source": [ "# Class: ElementaryPolynomial" ] }, { "cell_type": "markdown", "id": "7743dd4e-086f-4e8b-8a61-a425353608bb", "metadata": {}, "source": [ "As expected, everything we said about the Complete Homogeneous Polynomials is also true for the Elementary Symmetric Polynomials. " ] }, { "cell_type": "code", "execution_count": 2, "id": "318153fd-cb08-450b-85db-1b74dee02795", "metadata": {}, "outputs": [], "source": [ "n = 3\n", "elementary = [sy.ElementaryPolynomial(i) for i in range(n+1)]\n", "t_dict = ut.create_miwa(n)" ] }, { "cell_type": "code", "execution_count": 3, "id": "ccab1283-fb17-47bf-a95c-a42f9805fac3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle t_{1}$" ], "text/plain": [ "t1" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\frac{t_{1}^{2}}{2} - t_{2}$" ], "text/plain": [ "t1**2/2 - t2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\frac{t_{1}^{3}}{6} - t_{1} t_{2} + t_{3}$" ], "text/plain": [ "t1**3/6 - t1*t2 + t3" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] } ], "source": [ "for a in elementary:\n", " display(a.explicit(t_dict))\n", " print(10*'-')" ] }, { "cell_type": "code", "execution_count": 5, "id": "05b0835b-9ce0-4fea-ba37-f9327f4246c7", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\operatorname{Poly}{\\left( \\frac{1}{2} t_{1}^{2} - t_{2}, t_{1}, t_{2}, domain=\\mathbb{Q} \\right)}$" ], "text/plain": [ "Poly(1/2*t1**2 - t2, t1, t2, domain='QQ')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "elementary[2].explicit(t_dict, True)" ] }, { "cell_type": "code", "execution_count": 8, "id": "f36b75df-5206-49b3-8243-6a8798d31ef6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{Poly}{\\left( x_{1} + x_{2}, x_{1}, x_{2}, domain=\\mathbb{Q} \\right)}$" ], "text/plain": [ "Poly(x1 + x2, x1, x2, domain='QQ')" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{Poly}{\\left( x_{1}x_{2}, x_{1}, x_{2}, domain=\\mathbb{Q} \\right)}$" ], "text/plain": [ "Poly(x1*x2, x1, x2, domain='QQ')" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{Poly}{\\left( 0, x_{1}, x_{2}, domain=\\mathbb{Q} \\right)}$" ], "text/plain": [ "Poly(0, x1, x2, domain='QQ')" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "----------\n" ] } ], "source": [ "m=2\n", "tt = ut.tx_power_sum(elementary[-1].level, m)\n", "for a in elementary:\n", " display(a.explicit(tt, True))\n", " print(10*'-')" ] }, { "cell_type": "code", "execution_count": null, "id": "2fdfa727-4975-45ce-9e01-6cc44c055838", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }