pysymmpol.utils package
Submodules
pysymmpol.utils.inner module
- pysymmpol.utils.inner._accel_asc(n)[source]
This fast algorithm to generate integer partitions is the heart of this project.
The author of this beauty is Jerome Kelleher, and He argues that it is the fasted algorithm available nowadays. See more here: https://jeromekelleher.net/category/combinatorics.html
- pysymmpol.utils.inner._conjugate(p)[source]
Find the conjugate of a partition. E.g. len(p) = max(conjugate(p)) and vice versa.
See more here: https://www.ics.uci.edu/~eppstein/PADS/IntegerPartitions.py
This algorithm is good for tests, but my algorithm is better than this one. Partitions that have zeros at the end give wrong results. For example, the self dual partition (2,1,0,0,0) gives the conjugate (5,1).
pysymmpol.utils.tools module
- pysymmpol.utils.tools.character(young_diagram: YoungDiagram, vector: ConjugacyClass)[source]
Characters of the symmetric group using the Frobenius Character Formula.
- pysymmpol.utils.tools.create_miwa(n: int) dict [source]
This function creates the appropriate Miwa coordinates as a dictionary.
- pysymmpol.utils.tools.create_x_coord(m) tuple [source]
This function creates the x coordinates as a tuple.
- pysymmpol.utils.tools.newton_polynomial(x: tuple, vector: ConjugacyClass)[source]
Function to calculate the Newton polynomials.
- pysymmpol.utils.tools.partitions_of(n: int) int [source]
Function that returns the number of partitions of a given integer.